If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-100X-50=0
a = 1; b = -100; c = -50;
Δ = b2-4ac
Δ = -1002-4·1·(-50)
Δ = 10200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10200}=\sqrt{100*102}=\sqrt{100}*\sqrt{102}=10\sqrt{102}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-10\sqrt{102}}{2*1}=\frac{100-10\sqrt{102}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+10\sqrt{102}}{2*1}=\frac{100+10\sqrt{102}}{2} $
| x^4+100x^2=50 | | x-3+4x+3=180 | | 5x-26+3x-20=90 | | 5x-8+3x-28=180 | | 8x-8+x-10=90 | | 7x-14=4x+25 | | 3x+10=3x-58 | | 11x-33=25-10x | | x^2+54x=-729 | | 8b-2=7b-9 | | d+12/33=5 | | (d+12)/33=5 | | -7+m=14 | | 8g+3g=22 | | 3e+e=-20 | | x^2-5x+x+40=180 | | 1/p+4/3p-1=0 | | -(10x-6)-6=-9x | | (y/5)-34=-2222 | | -3x-8+6=-7x+9 | | 9c-29=34 | | 3a-9=-30 | | 12-8x=76 | | 49+3x=10x | | 55-3x=-20 | | 2v+64=10v | | 3-(2/3)(6x-9)=5-2x | | 3-2/3(6x-9)=5-2x | | -5w+5=8w-10 | | -9.5(6-9s)=28.5 | | w=0.55=7.8 | | 7.0368744e+13=70368744000000 |